Remote Sensing of Subsurface Biomineralization

Kenneth H. Williams^{1,2}, Dimitrios Ntarlagiannis³, Lee Slater³, Phil Long⁴, Alice Dohnalkova⁴, Susan Hubbard² and Jillian Banfield¹

¹Dept of Env. Science, Policy & Management, University of California, Berkeley

²Lawrence Berkeley National Laboratory, Berkeley, CA

³Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ

⁴Pacific Northwest National Laboratory, Richland, WA

Motivation

"Use of non-invasive geophysical methods to monitor the extent and stability of biomineralization products *over large spatial scales*"

• *Hypothesis*: microbial processes induce *changes in mineralogy* that can be detected using timelapse induced polarization methods

• Challenges:

- Competing metabolic processes
- Mineral phase transformations
- Non-contaminant mineral effects
- Poor signal contrast

Stimulated Biomineralization

- Use of indigenous microorganisms to remediate toxic metals and radionuclides in groundwater
 - Delivery of substrates necessary to promote desired metabolism
 - Conversion from **soluble** to **insoluble** forms:

(i)
$$Pb^{2+}$$
, $Zn^{2+}(aq) + H_2S \rightarrow PbS$, $ZnS(s) + 2H^+$ [via SO_4^{2-} -reduction]

(ii) U^{6+} , Cr^{6+} (aq), $\to UO_2$, Cr_2O_3 (s)

[via Fe(III)-reduction]

Geophysical Monitoring:

Possibilities and Pitfalls

Successful interpretation requires an understanding of...

• Spectral Induced Polarization

- Low frequency (0.1-1000 Hz) electrical measurements
- Measure ϕ and |Z|
- Correlate changes with:
 - Active SRB metabolism
 - ZnS, FeS precipitates
 - Aggregation state, texture, and composition of precipitates

• Induced Polarization Results

- Phase shifts are spatially variable (A)
 - Motility due to chemotaxis
- Phase shifts are temporally variable at a given location (**B**)
 - Mineralogical effects:
 - Aggregation of nanoparticulate precipitates
 - Crystal growth and ageing

- Mineral evolution (1):
 - Sulfides are initially nanoparticulate and tied to cell surfaces
 - Characteristic of biogenic precipitates
 - Large surface areas
 - Large phase shifts

- Mineral evolution (2):
 - Overlain by non sulfide-encrusted cells (A)
 - Aged FeS coats grain surfaces
 - Dense, crystalline FeS layer (B)
 - Platy crystal habit (C)

XRD analysis indicates increasing crystallinity with time

Field Monitoring: U(VI) Remediation at Old Rifle Site, CO

Field Monitoring: U(VI) Remediation at Old Rifle Site, CO

- Surface Spectral IP Survey:
 - Zonge GDP-32 RPIP survey
 - 0.125, 1, and 8 Hz
 - Electrode spacing: 1.0 m
 - Dipole-Dipole survey w/ 4.0 m dipole
 - Cu/CuSO₄ electrodes

Array 1: Parallel to flow

- Time-lapse IP results (0.125 Hz):
 - Phase shifts *decrease* w/time
 - Changes occur:
 - Below water table
 - Near injection wells (I)
 - Some upgradient effects

Array 3: Perpendicular to flow

- Time-lapse IP results (0.125 Hz):
 - Phase shifts *decrease* w/time
 - Changes occur:
 - Below water table
 - Near injection wells (I)
 - Lateral effects

20

25

30

Distance Along Array (m)

Geochemical Results

- Stimulated Fe(III)-reduction:
 - Decreasing Redox potentials
 - Fe(III)/Fe(II): 100 to -100mV
 - Increasing Fe²⁺ concentrations

Proposed IP Mechanism

- Stimulated Fe³⁺-reduction:
 - Mineralogical changes
 - $Fe(OH)_3 \rightarrow FeOOH \rightarrow Fe_3O_4$
 - Decreasing surface area
 - Creation of less polarizable phases (e.g. magnetite)

15

Distance Along Flownath (m),

20

25

30

Array 1

What's Next and Why?

- Transition to sulfate-reduction:
 - Correlates w/ rebound in U(VI)
 - FeS observed during previous experiment (still occurring!)
 - Creation of *polarizable* phases
- Multiple metabolic pathways
 - Distinct IP signals for both!

Array 1

Three Weeks after Injection Began

Twenty(?)Weeks after Injection Began

Summary

Improved understanding of geophysical observations:

- Processes that *influence* contaminant metals remediation during biostimulation
 - Understanding mineralogical effects is critical
- Potential of using *IP method* as a minimally invasive *field-scale* approach for monitoring such processes
 - Understanding metabolic effects is critical

Acknowledgments and Funding

- Banfield Lab group members
- Laboratory and Field Work:
 - DOE's Office of Science, EMSP Program
 - DOE's NABIR and UMTRA Programs
 - DOE's William R. Wiley Environmental Molecular Sciences Laboratory (EMSL)
 - Special thanks to Jim Young (PNNL) for invaluable assistance with the electron microscopy
 - Andreas Kemna for Rifle, CO IP data processing